
March 2010 FoxRockX Page 11

Over the last few years, I've found many situations
where data-driving code makes an application
easier to maintain. But sometimes, data-driving
alone can lead to repeated code and more difficult
maintenance. In such cases, combining good object-
oriented practices with data-driving may provide a
better solution.
An application I've been working on has to accept
Canadian health numbers. Each province in Canada
issues a personal health number (PHN) to each
individual to give them access to the provincial
health care system. (The application in question
doesn't have to accept PHNs from Quebec, so I
don't know whether the information below applies
for that province.)

The application needs to validate PHNs. While
there's no way to ensure that the specified PHN
is the right number for that individual, short of
checking provincial records, there are two fairly
easy tests.

The first is to make sure that the PHN has the
right number of digits. The right number varies by
province, and a simple look-up does the job.

In addition, each province uses a check digit
for the PHN. A check digit is an additional digit
derived from the other digits, which confirms that
the specified PHN is in the right format.

With VFP's string-handling capabilities,
computing a check digit is simple. However,
different provinces have different own rules for
computing the check digit. In addition, the rules
have changed over time, and it's reasonable to
assume that they will change again.

So I looked for a general solution. What I
ended up was a data-driven class. While you may
not need to compute check digits for Canadian
health numbers, the basic ideas are more widely
applicable.

Computing check digits
Before exploring my solution, let's take a look at the
kind of calculation that's needed. For the most part,
the algorithms fall into two broad groups. One
group doubles some of the digits and then adds
them all up, then subtracts the units (the ones digit)
from 10 to get a check digit.

For example, New Brunswick has a 9-digit
PHN, where the last digit is the check digit. To
compute the check digit, you add up the digits in
odd positions (digits 1, 3, 5 and 7). Then double the
digits in even positions (positions 2, 4, 6 and 8) and
add those together; if any of the doubled values is
more than 9, add the tens and the ones digits from
the doubling separately. Next, add the totals from
the odds and the evens together and keep only
the ones digit of the result. Subtract that number
from 10 to get the check digit. Listing 1 shows an
example:

Listing 1. To compute a check digit, New Brunswick adds the
odd digits, then doubles the even digits and adds them to the
total, including tens and ones digits separately. The ones digit
of the total is subtracted from 10 to provide the check digit.
PHN without check digit = 23947578

Add digits in odd positions: 2 + 9 + 7 + 7 = 25
Double and add digits in even positions: 6 + 8
+ (1 + 0) + (1 + 6) = 22
Total: 25 + 22 = 47

Subtract ones digit from 10 for check digit:
10 – 7 = 3
Full PHN = 239475783

The second approach to the problem involves
multiplying each digit of the PHN by a specified
value, then adding the results. The total is divided
by 11 and the remainder from that division is the
check digit.

Manitoba uses this sort of algorithm. It has a
9-digit PHN with the check digit at the end. The
multipliers for the first 8 digits are, in order, 29,
23, 19, 17, 13, 7, 5 and 3. Listing 2 shows the same
example as Listing 1.

Listing 2. In Manitoba, each digit is multiplied by a specified
value. Those results are totaled and divided by 11. The remain-
der is the check digit.
PHN without check digit = 23947578

Multiply and total:
2*29 + 3*23 + 9*19 + 4*17 + 7*13 + 5*7 + 7*5 +
8*3 = 551

Find remainder mod 11: 1

Full PHN = 239475781

OOP + Metadata = Flexibility
Combining objects with meta-data that contains code using
those objects can provide easy-to-change solutions

Tamar E. Granor, Ph.D.

Page 12 FoxRockX March 2010

The list of multipliers varies by province using
this scheme.

In addition to these two broad categories, there
are differences in where the check digit appears in
the PHN and in how the check digit is applied. For
example, in most provinces where the check digit
becomes part of the PHN, it's the last character, but
in Alberta, it's the middle character. In some of the
provinces that use the MOD 11 type checking, the
goal is for the computed check digit to be 0, while
others (like Manitoba) make the check digit part of
the PHN.

Making it Generic
When I tackled this problem, it seemed clear to me
that I needed a class that could hide the details of
checking an id, and that I'd need to look up the right
province to figure out what algorithm to use. That
is, a CheckID method could look in a table to find
out how to check an id for a specified province.

The first step in solving the problem was to
find the common parts. Among the provinces using
algorithms like New Brunswick's, some doubled
the odd digits while others doubled the even digits.
But they all then added up the digits of the results.
So I created a generic MultiplyAndAddDigits
method that accepts a character string and an array
of multipliers. It multiplies each digit in the string
by the corresponding multiplier. It then adds the
tens and the ones digits of the result to the running
total. The code is shown in Listing 3.

Listing 3. The MultiplyAndAddDigits method multiplies each
digit in the PHN by a specified multiplier and adds the results.
This is the first step in several of the check digit algorithms,
though the set of multipliers varies.
PROCEDURE MultiplyAndAddDigits(;
 cID, aMultipliers)
* Multiply digits by the specified factors,
* then add all digits

LOCAL nDigits, nDigit, nResult, nProduct

nDigits = ALEN(aMultipliers)
nResult = 0
FOR nDigit = 1 TO nDigits
 nProduct = VAL(SUBSTR(cID,nDigit,1)) * ;
 aMultipliers[nDigit]
 nResult = nResult + MOD(nProduct, 10) + ;
 FLOOR(nProduct/10)
ENDFOR

RETURN nResult

Next, I created two methods that call on Mul-
tiplyAndAddDigits: As their names suggest,
DoubleEvenDigitsFrom10 adds the odd digits
unchanged and doubles the even digits, while
DoubleOddDigitsFrom10 adds the even digits un-
changed and doubles the odd digits. Each method
sets half the multipliers to 1 and the other half to 2.

Listing 4. DoubleEvenDigitsFrom10 uses MultiplyAndAddDigits
to compute the check digit for the algorithm used in New Bruns-
wick and several other provinces and territories.
PROCEDURE DoubleEvenUnitsFromTen
* Double even digits, sum,
* then subtract units from 10
LPARAMETERS cID

LOCAL nTotal, nDigits, nDigit, nUnits, ;
 nCheckDigit, lReturn, aMultipliers[1]

nDigits = LEN(TRIM(cID))
DIMENSION aMultipliers[nDigits]
FOR nDigit = 1 TO nDigits-1
 IF MOD(nDigit,2) = 1
 aMultipliers[nDigit] = 1
 ELSE
 aMultipliers[nDigit] = 2
 ENDIF
ENDFOR
aMultipliers[nDigits] = 0

nTotal = This.MultiplyAndAddDigits(cID, ;
 @aMultipliers)

nUnits = MOD(nTotal, 10)
IF nUnits = 0
 nUnits = 10
ENDIF
nCheckDigit = 10-nUnits

lReturn = (nCheckDigit = ;
 VAL(SUBSTR(cID, nDigits, 1)))
RETURN lReturn

DoubleOddDigitsFrom10 is the same, except
for the assignment of the multipliers. (Reviewing
this code now, I see that I could have pulled the last
part into a common routine, as well.)

Although the MOD 11 check digit algorithm is
the same everywhere (except for the multipliers),
it seemed possible to me that in future, there could
be another algorithm that multiplies each digit by
a specified multiplier and adds all the results, but
does something different with the result. So I wrote
another method, MultiplyAndAdd (shown in
Listing 5). It receives a character string for the health
ID, and a comma-separated list of multipliers; it
multiplies each digit by the specified multiplier and
returns the total of those numbers. (This version
sums the multiplication results as is; it doesn't split
out the tens and the ones.)

Listing 5. MultiplyAndAdd multiplies each digit by the specified
value and totals the results.
PROCEDURE MultiplyAndAdd(cID, cMultipliers)
* Multiply digits by the specified factors
* and sum results

LOCAL nDigits, nDigit, nProduct, nTotal, l
 aMultipliers[1]

nDigits = ALINES(aMultipliers, ;
 cMultipliers, ",")
FOR nDigit = 1 TO nDigits
 aMultipliers[nDigit] = ;
 VAL(aMultipliers[nDigit])
ENDFOR

March 2010 FoxRockX Page 13

nTotal = 0

FOR nDigit = 1 TO nDigits
 nProduct = VAL(SUBSTR(cID, nDigit, 1)) * ;
 aMultipliers[nDigit]
 nTotal = nTotal + nProduct
ENDFOR

RETURN nTotal

Then I created Mod11Check, which calls on
MultiplyAndAdd to compute the check digit. It's
shown in Listing 6.

Listing 6. The code to compute a check digit with the MOD
11 method is quite simple, since it calls on MultiplyAndAdd for
most of the work.
PROCEDURE Mod11Check(cID, cMultipliers)
* Multiply digits by the specified factors,
* add results and return result mod 11

LOCAL nTotal, nResult

nTotal = This.MultiplyAndAdd(cID, ;
 cMultipliers)

nResult = MOD(nTotal, 11)

RETURN nResult

You might wonder why I use an array of
multipliers for the first algorithm, but pass a
comma-separated list of them for the second. In
the MOD 11 case, the list of multipliers is passed
from outside this object; that is, whatever calls this
code has to put the list together. For the odd/even
strategy, the list of multipliers is created internally
(in DoubleXXDigitsFrom10) . Passing arrays is a bit
of a pain in VFP, so using a string for the external
call made sense to me. The string is converted to an
array before we use it in MultiplyAndAdd.

There's one other difference between the two
algorithms. The DoubleXXDigitsFrom10 methods
actually check whether the PHN passed in has
a valid check digit and return a logical value.
Mod11Check returns the computed check digit.

The reason they work differently is that all
the provinces and territories that use the first
strategy incorporate the check digit in the PHN.
The provinces and territories using the MOD 11
strategy vary as to whether the check digit is part
of the PHN, or should be 0.

Using the common code
The next step was to find a way to put all this
code to use for the individual provinces. I could
have simply created an additional set of methods,
one per province that called on the common code.
However, that would have meant that each time
a province changed its check digit algorithm, the
application would have to be updated.

Instead, I stored that "method" code in a table.
CheckDigitCode has the structure shown in Listing
7. cProvince contains the two-digit abbreviation
for the province. lRecip indicates whether there's a
reciprocal coverage agreement with that province.
The code is stored in the memo field, mCode.
nIDLen indicates the length of the PHN for that
province.

Listing 7. The code to compute the check digits is stored in a
table, to make it easier to manage changes.
CPROVINCE Character 2
LRECIP Logical 1
MCODE Memo 4
NIDLEN Numeric 2

The code in mCode expects two parameters, the
PHN to be checked, and a reference to the checker
object. It returns a logical value, indicating whether
the PHN passes the test.

The code in mCode for New Brunswick is
shown in Listing 8. It's about as simple as possible.
The PHN is passed unchanged, and the result
of a single call to DoubleEvenDigitsFrom10 is
returned.

Listing 8. The code to check a New Brunswick PHN is the sim-
plest case.
LPARAMETERS cID, oCheck
RETURN oCheck.DoubleEvenUnitsFromTen(cID)

Alberta uses the same strategy for computing
the check digit, but puts it in the middle rather
than at the end of the PHN, so the code in mCode
in that record (shown in Listing 9) is a little more
complex.

Listing 9. To check an Alberta PHN, you have to pull the check
digit out of the middle first.
LPARAMETERS cID, oCheck
LOCAL cAdjustedID

cAdjustedID = LEFT(cID, 4) + RIGHT(cID,4) + ;
 SUBSTR(cID, 5, 1)

RETURN ;
 oCheck.DoubleEvenUnitsFromTen(cAdjustedID)

Manitoba uses the MOD 11 strategy, and
makes the check digit the final digit of its 9-digit
ID. Since the MOD 11 algorithm could return 10,
only the ones digit of the result is used. The code in
Manitoba's record is shown in Listing 10.

Listing 10. Manitoba uses the MOD 11 strategy and includes
the check digit as the last character of the PHN.
LPARAMETERS cID, oCheck
LOCAL cValues, nCheckDigit, lReturn

cValues = "29,23,19,17,13,7,5,3"

nCheckDigit = MOD(oCheck.Mod11Check(;
 cID, cValues), 10)

Page 14 FoxRockX March 2010

lReturn = (nCheckDigit = VAL(RIGHT(cID,1)))

RETURN lReturn

Saskatchewan also uses MOD 11, but rather
than incorporating the check digit, it requires it to
be 0. So the memo field contains the code in Listing
11.

Listing 11. Saskatchewan requires the MOD 11 check digit to
be 0, so its code is fairly simple.
LPARAMETERS cID, oCheck
LOCAL cValues, nCheckDigit, lReturn

cValues = "9,8,7,6,5,4,3,2,1"
nCheckDigit = oCheck.Mod11Check(cID, cValues)

lReturn = (nCheckDigit = 0)

RETURN lReturn

One of the strengths of this approach is that it
accommodates odd requirements well. For example,
all British Columbia PHN's begin with 9, while
those for Northwest Territories must begin with
a letter. It's easy to code such rules in the mCode
field, and should they change, easy to make those
adjustments without rebuilding the application.

In fact, even the list of entities to which the
rules apply can change. It's only a few years since
the Northwest Territory was split to add Nunavut.
A code-only solution would require a new build in
that case. With this approach, just one table has to
be updated and distributed.

Combining common code with
data
The final step in the process is putting the stored
code to work. To do that, I use a method in the
same object as the common code. CheckID (Listing
12) receives the PHN and the province abbreviation
as parameters. It finds the province data, checks
the length of the passed PHN, then executes the
appropriate code. For simplicity, the data in the
table is pulled into an array (aCheckMethods) in
the object's Init method, and the array is used here.

Listing 12. The CheckID method pulls the whole process
together. The PHN's length is checked, and if it passes that
test, the check digit is tested, according to the rules for that
province.
PROCEDURE CheckID(cID, cProv)

LOCAL lReturn, nRow

* Find the right method and call it
nRow = ASCAN(This.aCheckMethods, ;
 UPPER(cProv), -1, -1, 1, 8)
IF nRow = 0
 * Return .F. if the province code
 * is no good.
 lReturn = .F.
ELSE
 * First check length
 IF LEN(ALLTRIM(cID)) = ;
 This.aCheckMethods[nRow, 3]

 cCode = This.aCheckMethods(nRow, 2)
 lReturn = EXECSCRIPT(cCode, ;
 ALLTRIM(cID), ;
 This)
 ELSE
 lReturn = .F.
 ENDIF
ENDIF

RETURN lReturn

The key code in CheckID is the EXECSCRIPT()
line. It executes the code from the memo field,
passing the two required parameters: the PHN, and
a reference to the object.

The downloads include the code and the table,
along with a program that demonstrates the use of
the code.

Using this technique
I haven't used this strategy in another application
yet. But several of the tools that come with VFP use
similar approaches.

IntelliSense has a code component that includes
a number of useful methods. It's driven by the
FoxCode table. You can include executable code
in the Data memo for certain record types. That
code receives an object reference to the IntelliSense
object, and thus can use the built-in methods. To see
this in action, check out any of the records where
type="S".

The Task Pane Manager has an engine object
and a driving table. Code stored in the table can use
methods of the engine object. As with IntelliSense
and my PHN code, the code in the table receives as
a parameter an object reference to the engine, so it
has easy access to the code.

Keep this approach in mind any time you have
some common code, but a number of ways of using
it, especially in cases where those ways may change
over time.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for businesses
and other organizations. She currently focuses on
working with other developers through consulting and
subcontracting. Tamar is author or co-author of ten
books including the award winning Hacker’s Guide
to Visual FoxPro, Microsoft Office Automation with
VisualFoxPro and Taming Visual FoxPro’s SQL .
Her latest collaboration is Making Sense of Sedna and
SP2, coming out this year. Her books are available
from Hentzenwerke Publishing (www.hentzenwerke.
com). Tamar is a Microsoft Support Most Valuable
Professional. In 2007, Tamar received the Visual FoxPro
Community Lifetime Achievement Award. You can
reach her at tamar@thegranors.com or through www.
tomorrowssolutionsllc.com.

